<<
>>

2.4.3. Операции над нечеткими числами

Целый раздел теории нечетких множеств - мягкие вычисления (нечеткая арифметика) - вводит набор операций над нечеткими числами. Эти операции вводятся через операции над функциями принадлежности на основе так называемого сегментного принципа.

Определим уровень принадлежности а как ординату функции принадлежности нечеткого числа. Тогда пересечение функции принадлежности с нечетким числом дает пару значений, которые принято называть границами интервала достоверности. \r\n

Зададимся фиксированным уровнем принадлежности а и определим соответствующие ему интервалы достоверности по двум нечетким числам А и В : [аі, а2] и [Ьь Ь2], соответственно. Тогда основные операции с нечеткими числами сводятся к операциям с их интервалами достоверности. А операции с интервалами, в свою очередь, выражаются через операции с действительными числами - границами интервалов:

операция "сложения": [аі, а2] (+) [Ьі, Ь2] = [аі + Ьі, а2 + Ь2],

операция "вычитания": [аі, а2] (-) [Ьі, Ь2] = [аі - Ь2, а2 - Ьі],

операция "умножения": [аі, а2] (х) [Ьі, Ь2] = [аі х Ьі, а2 х Ь2],

операция "деления": [аі, а2] (/) [Ьі, Ь2] = [аі / Ь2, а2 / Ьі],

операция "возведения в степень": [аі, а2] (Л) і = [аі1 , а^]. (2.і0)

Из существа операций с трапезоидными числами можно сделать ряд важных утверждений (без доказательства):

действительное число есть частный случай треугольного нечеткого числа;

сумма треугольных чисел есть треугольное число;

треугольное (трапезоидное) число, умноженное на действительное число, есть треугольное (трапезоидное) число;

сумма трапезоидных чисел есть трапезоидное число;

сумма треугольного и трапезоидного чисел есть трапезоидное число.

(2.6)

(2.9)

Анализируя свойства нелинейных операций с нечеткими числами (например, деления), исследователи приходят к выводу, что форма функций принадлежности результирующих нечетких чисел часто близка к треугольной. Это прозволяет аппроксимировать результат, приводя его к треугольному виду. И, если приводимость налицо, тогда операции с треугольными числами сводятся к операциям с абсциссами вершин их функций принадлежности. \r\n

То есть, если мы вводим описание треугольного числа набором абсцисс вершин (а, Ь, с), то можно записать:

(аі, Ьі, сі) + (а2, Ь2, С2) = (аі + а2, Ьі + Ь2, сі + С2) (2.11)

Это - самое распространенное правило мягких вычислений.

<< | >>
Источник: Недосекин А. О. Нечетко-множественный анализ риска фондовых инвестиций. 2002

Еще по теме 2.4.3. Операции над нечеткими числами:

- Авторское право - Аграрное право - Адвокатура - Административное право - Административный процесс - Антимонопольно-конкурентное право - Арбитражный (хозяйственный) процесс - Аудит - Банковская система - Банковское право - Бизнес - Бухгалтерский учет - Вещное право - Государственное право и управление - Гражданское право и процесс - Денежное обращение, финансы и кредит - Деньги - Дипломатическое и консульское право - Договорное право - Жилищное право - Земельное право - Избирательное право - Инвестиционное право - Информационное право - Исполнительное производство - История - История государства и права - История политических и правовых учений - Конкурсное право - Конституционное право - Корпоративное право - Криминалистика - Криминология - Маркетинг - Медицинское право - Международное право - Менеджмент - Муниципальное право - Налоговое право - Наследственное право - Нотариат - Обязательственное право - Оперативно-розыскная деятельность - Права человека - Право зарубежных стран - Право социального обеспечения - Правоведение - Правоохранительная деятельность - Предпринимательское право - Семейное право - Страховое право - Судопроизводство - Таможенное право - Теория государства и права - Трудовое право - Уголовно-исполнительное право - Уголовное право - Уголовный процесс - Философия - Финансовое право - Хозяйственное право - Хозяйственный процесс - Экологическое право - Экономика - Ювенальное право - Юридическая деятельность - Юридическая техника - Юридические лица -