<<
>>

§ 5. Использование безрисковых займов и кредитов

Подход Марковица предполагает, что все инвестиции вложены В рисковые активы. Теперь предположим, что инвестору разрешается вкладывать средства в безрисковые активы, т. е. если имеется N активов, то (N — 1) — это количество рисковых активов и один безрисковый.

Допустим также, что инвестор может привлекать займы по безрисковой ставке и использовать их для вложения в рисковые активы.

Под безрисковым активом понимаются актив, по которому доход является строго определенным. По определению, стандартное отклонение по безрисковому активу равно нулю. Следовательно, ковариация между доходностями безрискового актива и любого рискового актива равна нулю. В качестве безрискового актива должен выступать актив, имеющий фиксированный доход и нулевую вероятность неуплаты, К таким активам могут быть отнесены государственные краткосрочные облигации, срок погашения которых совпадает с периодом владения. Покупка безрискового актива представляет собой безрисковое кредитование, так как при этом инвестор предоставляет деньги взаймы.

Предположим, что инвестор выбирает портфель, составленный из рисковых активов, и намеревается комбинировать этот портфель с вложением части средств в безрисковый актив. Положение портфеля соответствует точке D, лежащей на эффективной границе Марковица (рис. 12.8).

Рис. 12.8. Графики портфелей, сочетающих рисковые и безрисковые активы

Рис. 12.8. Графики портфелей, сочетающих рисковые и безрисковые активы

Портфель, формируемый включением безрискового актива в рисковый портфель, должен лежать на прямой, которая соединяет точку соответствующего безрискового актива (Rf) с точкой, характеризующей портфель, составленной из определенного сочетания ценных бумаг (D).

Эта прямая представляет собой комбинации портфелей, состоящих из различных долей безрискового и рискового активов.

Как было показано ранее, эффективные портфели из модели Марковица должны лежать на кривой EF. Теперь мы приходим к выводу, что в случае сочетания портфеля с безрисковым активом портфели должны располагаться на линии, соединяющей точку безрискового актива с рисковым портфелем.

Однако таких линий может быть проведено множество, и одна из них — это линия RfD. Какая же линия является более привлекательной? Портфели, лежащие на линии R/D, не являются эффективными, так как любому портфелю, лежащему на этой линии, например Pt может быть противопоставлен портфель Р\'2 с более высокой доходностью при той же степени риска, либо портфель Рз с той же доходностью, но меньшей степенью риска. Следовательно, эффективные портфели будут лежать на линии, которая имеет наибольший угол наклона по отношению к горизонтальной оси. Эта линия выходит из точки Rj и является касательной по отношению к кривой, соответствующей эффективному множеству границы Марковица. Сама точка касания будет соответствовать портфелю, который составлен только из акций. Все портфели, лежащие выше и правее точки Т, также будут составлены только из рисковых активов. Чем больше инвестор стремится избегать риска, тем ближе точки, соответствующие выбранному портфелю, будут находиться к точке Rj. Если же инвестор стремится полностью избежать риска, то его портфель должен быть оставлен полностью из безрисковых активов.

Предположим теперь, что инвестор может увеличить свой капитал для вложения в данные бумаги за счет безрисковых займов. В частности, можно предположить, что эти займы привлекаются за счет кредита брокера. Для целей настоящего анализа предполагается, что процентная ставка по привлечению кредитных средств равна процентной ставке по безрисковым вложениям. Например, если у инвестора было 10 000 долл., и он взял взаймы 2000 долл., то это значит, что он может вложить в рисковые активы 12 000 долл.

Если доля в рисковые активы составляет WK и безрисковый заем WF, то:

WR + Wf-l,2 + (-0,2)-l.

Нетрудно доказать, что портфели, состоящие из безрисковых займов и рисковых активов, будут лежать на продолжении прямой линии RjT, как и портфели, которые включали безрисковое кредитование. При этом чем больше сумма привлеченных средств, тем выше и правее располагается точка портфеля. Точное расположение каждой точки зависит от величины займа. Какое бы количество средств мы ни привлекали, если эти средства вместе с собственным капиталом помещаются в рисковый портфель, то он будет лежать на прямой RqT. Эта прямая будет представлять собой не что иное, как эффективное множество, т. е. портфели, предлагающие наилучшие возможности, будут располагаться именно на этой прямой, так как каждый из них лежит левее и выше остальных. Портфелей, лежащих рлево от прямой, не существует, а любому портфелю, лежащему вправо от прямой, например портфелю Л/, может быть противопоставлен портфель М3, который имеет такую же доходность, но меньшее стандартное отклонение, или портфель Мъ обеспечивающий более высокую доходность при том же стандартном отклонении. Таким образом, если мы вводим условие, что инвестор имеет возможность предоставлять или получать безрисковые займы, то при этом уело-

ВИИ ни один из портфелей, кроме портфеля Г, не являются эффективным. Эффективным портфелем в эффективном множестве модели Марковица является единственный портфель Т, который находится в точке касания прямой и эффективной границы модели Марковица.

Любая другая структура портфеля с использованием займов и кредитов не будет являться эффективной, так как любой из этих портфелей будет лежать правее линии RfT, а это означает, что всегда найдется портфель, который лежит на прямой.

<< | >>
Источник: В.В. Ковалев. Инвестиции: Учебник / Под ред В.В. Ковалева, В В. Иванова, В.А. Лялина — М.: ООО «ТК Велби»,2003. — 440 с. 2003

Еще по теме § 5. Использование безрисковых займов и кредитов:

  1. Предметный указатель
  2. 4.3. Риски при финансировании недвижимости
  3.   } 0.3.Банковская система России
  4. § 3. Облигационные займы
  5. § 5. Использование безрисковых займов и кредитов
  6. § 6. Модель Шарпа
  7. Финансовая политика
  8. Банковская услуга как объект ценообразования в кредитных организациях
  9. Виды номинальных процентных ставок
  10. 3.3.2. Выбор ставки дисконтирования
  11. ОТДЕЛЬНЫЕ СПЕЦИФИЧЕСКИЕ ФОРМЫ КРЕДИТА
  12. 4.3 Критерии эффективности использования оборотного капитала и формирование его оптимальной структуры
  13. Определение стоимости капитала
  14. Риск и леверидж в управлении финансовой структурой фирмы
  15. 3.5. Вероятностные риски
  16. 1.3.2. Активные операции банков с ценными бумагами
  17. 2.1. Методы оценки кредитного риска
  18. Активные операции банков:кассовые, кредитные, инвестиционные и др. Способы обеспечения исполнения кредитных обязательств. Оценка кредитоспособности заемщика. Операции банков с ценными бумагами и валютные операции
- Авторское право - Аграрное право - Адвокатура - Административное право - Административный процесс - Антимонопольно-конкурентное право - Арбитражный (хозяйственный) процесс - Аудит - Банковская система - Банковское право - Бизнес - Бухгалтерский учет - Вещное право - Государственное право и управление - Гражданское право и процесс - Денежное обращение, финансы и кредит - Деньги - Дипломатическое и консульское право - Договорное право - Жилищное право - Земельное право - Избирательное право - Инвестиционное право - Информационное право - Исполнительное производство - История - История государства и права - История политических и правовых учений - Конкурсное право - Конституционное право - Корпоративное право - Криминалистика - Криминология - Маркетинг - Медицинское право - Международное право - Менеджмент - Муниципальное право - Налоговое право - Наследственное право - Нотариат - Обязательственное право - Оперативно-розыскная деятельность - Права человека - Право зарубежных стран - Право социального обеспечения - Правоведение - Правоохранительная деятельность - Предпринимательское право - Семейное право - Страховое право - Судопроизводство - Таможенное право - Теория государства и права - Трудовое право - Уголовно-исполнительное право - Уголовное право - Уголовный процесс - Философия - Финансовое право - Хозяйственное право - Хозяйственный процесс - Экологическое право - Экономика - Ювенальное право - Юридическая деятельность - Юридическая техника - Юридические лица -