<<
>>

8. Конструкции, испытывающие влияние агрессивных сред

Параметры газовоздушной среды (химический и микробиологический состав, влажность, температура, количество и химический состав пыли, а также частота технологических сливов, продолжительность их контакта с конструкцией, качество агрессивных жидкостей) являются основными факторами, обуславливающими процессы коррозионного разрушения конструкции, в связи с чем они подлежат обязательному определению.

Степень агрессивности внутрицеховой среды определяют согласно СНиП 2.03-11-85.

Измерение температур на поверхности конструкции выполняют термощупами. Для разовых измерений температуры и относительной влажности внешнего воздуха и воздушной среды помещений используют термометры сопротивления, аспирационные психрометры, метеорологические термометры и гигрографы. Скорость воздуха в помещении измеряется анемометрами.

Определение загазованности и запылённости помещений выполняется в рабочей зоне, в зоне расположения обследуемых конструкций, под перекрытиями и покрытиями, в зоне аэрационных и вентиляционных установок. Для определения в воздухе концентрации агрессивных газов (серного ангидрида, сероводорода, хлора, окислов азота и др.) используются универсальные переносные газоанализаторы.

При исследовании запылённости воздушной среды определяют вид и концентрацию пыли в воздухе, её дисперсность и химический состав, а также интенсивность пылеотложения на строительных конструкциях.

Для количественной оценки запылённости используют, главным образом, аспирационный (весовой и расчетный) и седиментационный методы. Аспирационным методом определяют количество и дисперсный состав взвешенной в воздухе пыли (мг/м3) при помощи фильтров и сепараторов.

Для проведения химического анализа из каждой зоны отбирают по две пробы пыли массой 100-250 г каждая. Определяют её химический и фазовый состав, растворимость (слаборастворимая, хорошо растворимая), рН водных вытяжек и гигроскопичность.

Особое внимание уделяют наличию в пыли элементов, которые являются катодами по отношению к стали (графит, магнетит, медь, свинец). К слаборастворимой относится пыль с растворимостью менее 2 г/л; хорошо растворимая - более 2 г/л; рН водных вытяжек определяется при помощи универсальной индикаторной бумаги и рН-метров.

Пробы сливов в производственных помещениях отбираются из зон с постоянными и периодическими действиями жидкостей на конструкции. Масса одной пробы жидкости - 500 г; из каждой зоны отбираются две параллельные пробы. Рекомендуется при отборе измерять её температуру и водородный показатель рН экспресс-методом при помощи универсальной индикаторной бумаги. Химические анализы жидкостей, взятых с поверхностей конструкций, выполняют согласно СНиП 2.03. 11-85.

В отдельных случаях пробы воздуха, пыли или жидкости испытываются на выявление микроорганизмов, результатом деятельности которых на поверхности конструкций могут быть также коррозионные процессы.

8.1. Стальные конструкции

Коррозионный износ конструкций устанавливают визуально и инструментальными замерами участков с повышенными коррозионными повреждениями. Определение состояния адгезии и толщины антикоррозийных лакокрасочных покрытий выполняют согласно ГОСТ 6992-68, ГОСТ 15140-78. Толщины определяют толщиномерами.

Упругие и прочностные свойства прослойки антикоррозионных покрытий рулонных гидроизоляционных материалов и уплотнительных прокладок определяют в соответствии с ГОСТ 11721-78 и др.

Коррозию металла подразделяют на общую, сплошную (делят в свою очередь на равномерную и неравномерную в зависимости от изменения глубины коррозионного поражения на всех участках металлической поверхности) и местную. Местная коррозия имеет неодинаковую степень разрушения. Наиболее характерными видами местной коррозии являются коррозия пятнами, язвенная, питинговая, подповерхностная, межкристаллитная и транскристаллитная. Подповерхностная коррозия развивается под поверхностью и часто вызывает вспучивание и расслоение металла.

Наиболее опасные виды местной коррозии -межкристаллитная и транскристаллитная - возникают при постоянстве размеще­ния анодных и катодных участков, обусловленных направлением перемещения или накопления дислокаций в напряженно-деформированном металле.

Для определения химического состава продуктов коррозии отбираются их пробы, другие характеристики коррозионных поражений (их площадь, глубина коррозионных язв, величина утраты сечения, скорость коррозии) измеряют линейками, штангенциркулями, микрометрами, измерительными скобами, толщиномерами и другими инструментами с точностью не менее 0,1 мм. Замеры выполняют после удаления из поражённых участков противокоррозионного покрытия и слоя ржавчины.

8.2. Бетонные и железобетонные конструкции

С целью идентификации продуктов коррозии, определения степени коррозионного поражения конструкций отбираются пробы -образцы поражённой арматуры и материалов, а также продуктов коррозии для последующих лабораторных экспериментов (щёлочности бетона, водорастворимости компонентов, состава ионов SО4, Сl и др.). Значение рН водной вытяжки цементного камня рекомендуется определять при помощи рН-метра. Методы дифференциального термического анализа на пирометрах и фазового рентгеновского анализа на дефектометрах используют для оценки вещественного (минерального) состава цементного камня, идентификации продуктов коррозии: гипса, карбоната кальция, гидросульфоалюмината кальция и др.

Оптико-микроскопические исследования проводят с целью вещественной и качественной оценки структуры цементного бетона согласно ГОСТ 22023-76.

Водорастворимые компоненты определяются путем растворения 100 г подготовленного материала в 800 г дистиллированной воды с постепенным определением ионов кальция, магния, натрия, калия, аммония, хлора, сульфата, нитрата и органических веществ.

8.3. Каменные и армокаменные конструкции

Коррозия конструкции из природных каменных материалов зависит от их химической устойчивости к агрессивной среде. Наличие в материале двуокиси кремния повышает его устойчивость к действию кислот, но такие конструкции недостаточно стойкие к среде, которая содержит щелочные растворы.

И наоборот, когда в составе материала каменной конструкции преобладают щелочные окислы, такие конструкции стойкие к действию щелочей, но недостаточно стойкие к действию кислот. Конструкции из карбонатных пород (известняков, доломитов, мрамора) относительно быстрее корродируют, чем силикатные материалы, потому что в атмосферной среде преимущественно содержатся кислые примеси.

Для определения причин разрушения и коррозионного состояния каменных и армокаменных конструкций отбираются пробы материалов (камня и растворимой части), а также продуктов коррозии для определения физико-механических характеристик и химического состава.

8.4. Деревянные конструкции

Древесина характеризуется достаточной коррозионной стойкостью в слабоагрессивных средах. Коррозия может иметь физический характер (как последствия кристаллизации солей в поровой структуре древесины) или химический характер (при воздействии кислот или щелочей, образующихся при гидролизе солей). Хвойные породы древесины благодаря наличию в них смол имеют большую химическую стойкость, чем лиственные породы. Для повышения коррозионной устойчивости древесины ее покрывают стойкими лакокрасочными материалами или пропитывают синтетическими смолами, например, фенол-формальдегидными. Древесина после такой пропитки имеет повышенную стойкость к действию почти всех кислот, то есть становится долговечным строительным материалом. Химические и механические воздействия на деревянные конструкции в сравнении с повреждениями грибами и насекомыми несущественны.

Биоповреждения древесины наблюдаются, если древесина не обрабатывалась антисептиками, имели место благоприятные условия для развития грибов в процессе строительства и эксплуатации конструкций, а именно: при строительстве влажность древесины превышала допустимый уровень на 20-25 %; при эксплуатации температура воздуха составляла от +3 до +75° С (для различных грибов - свои оптимальные значения); влажность древесины - от 20-25 до 75 %. Общие признаки разрушения деревянных конструкций грибами: изменение цвета, прочности и структуры, трещины продольные и поперечные, трухлость. Различают коррозионную гниль (грибы разрушают главным образом лигнин, почти не затрагивая целлюлозу, вследствие чего гниль светлее здоровой древесины), деструктивную гниль (в начальной стадии древесина приобретает желтоватый или коричневатый оттенок, на конечной стадии имеет темнокоричневый цвет: грибы разрушают целлюлозу, но не затрагивают лигнин) и смешанную гниль, при которой грибы разрушают и целлюлозу и лигнин.

Среди наиболее распространенных грибов, потребляющих вещество клеток древесины деревянных конструкций, являются домовые грибы: домовый гриб "Мерулиус лакриманс" ("Меrulius lacrymans") и его разновидность - гриб домовый белый "Пориа вапорариа" ("Роriа vароrаriа"), гриб домовый кольчатый "Конифора церебелла" ("Соniporа сеrеbellа"), а также шахтный гриб ("Рахillus асhoruntius"), гриб столбовый ("Lеnzites sepiаria").

Причиной разрушения деревянных конструкций могут быть насекомые: домовый жук-кусач, домовый жук-точильник, жук долгоносик-трухляк, муравьи крыльчатые, древесные осы, термиты и др. Внешние признаки поражения: накопление древесной муки на полу возле ходов, на древесине видны круглые отверстия (глазки) диаметром 1,5 мм и более (в зависимости от вида насекомых), при простукивании раздаётся глухой звук.

Участки древесины, поврежденные насекомыми и их личинками, тщательно осматриваются, вырезаются и спиливаются. Однако повреждения древесины грибами и насекомыми в здании бывают преимущественно сплошными, т. е. охватывают все деревянные конструкции. Борьба с ними при таких условиях становится очень тяжелой, в связи с чем необходимо решать вопрос о полной замене деревянных конструкций.

<< | >>
Источник: Пакет документів по діяльності ОСББ. 2006

Еще по теме 8. Конструкции, испытывающие влияние агрессивных сред:

  1. Глава 15ДВЕ ДИНАСТИИ: ДЮПОНЫ И МЕЛЛОНЫ
  2. 8. Конструкции, испытывающие влияние агрессивных сред
  3. § 1. Предпосылки обособления публичных требований (в том числе требований, вытекающих из налоговых обязательств) в делах о банкротстве
  4. § 2.2. Криминологические аспекты предупреждения сексуальной преступности в отношении несовершеннолетних в США
- Авторское право - Аграрное право - Адвокатура - Административное право - Административный процесс - Антимонопольно-конкурентное право - Арбитражный (хозяйственный) процесс - Аудит - Банковская система - Банковское право - Бизнес - Бухгалтерский учет - Вещное право - Государственное право и управление - Гражданское право и процесс - Денежное обращение, финансы и кредит - Деньги - Дипломатическое и консульское право - Договорное право - Жилищное право - Земельное право - Избирательное право - Инвестиционное право - Информационное право - Исполнительное производство - История - История государства и права - История политических и правовых учений - Конкурсное право - Конституционное право - Корпоративное право - Криминалистика - Криминология - Маркетинг - Медицинское право - Международное право - Менеджмент - Муниципальное право - Налоговое право - Наследственное право - Нотариат - Обязательственное право - Оперативно-розыскная деятельность - Права человека - Право зарубежных стран - Право социального обеспечения - Правоведение - Правоохранительная деятельность - Предпринимательское право - Семейное право - Страховое право - Судопроизводство - Таможенное право - Теория государства и права - Трудовое право - Уголовно-исполнительное право - Уголовное право - Уголовный процесс - Философия - Финансовое право - Хозяйственное право - Хозяйственный процесс - Экологическое право - Экономика - Ювенальное право - Юридическая деятельность - Юридическая техника - Юридические лица -