<<
>>

{foto2} {foto3} {foto4} {foto5} \r\n Рисунок 1-3 Отрицательная корреляция (г = -1,00) Теперь посмотрите на рисунок 1-3. Он показывает две последовательности, которые находятся точно в противофазе. Когда одна линия идет вверх, другая следует вниз (и наоборот). Мы называем это отрицательной корреляцией. Формула для коэффициента линейной корреляции г двух последовательностей Х и У такова (черта над переменной обозначает среднее арифметическое значение): а =

Будучи трейдерами, мы должны исходить из того, что в большинстве рыночных систем зависимости не существует. То есть, при торговле в данной рыночной системе, мы находимся в среде, где результат следующей сделки не предсказуем на основе результата (результатов) предыдущих сделок.
Это не значит, что в рыночных системах никогда не бывает зависимости между сделками. Речь идет о том, что нам следует действовать так, как будто зависимости не существует, пока не будет убедительных доказательств обратного. Это произойдет в случае, если счет Ъ и коэффициент линейной корреляции указывают на зависимость на рынке даже с оптимизированными параметрами системы. Если мы посчитаем, что зависимость есть, когда нет убедительных доказательств, то обманем сами себя и не получим хороших торговых результатов. Даже если система показала зависимость при доверительной границе 95% для всех значений параметра, это не достаточно высокая доверительная граница, чтобы с уверенностью говорить, что на определенном рынке или в определенной системе зависимость между сделками существует.

Первая ошибка заключается в том, что мы можем отвергнуть гипотезу, которую следует принять. Если, однако, мы принимаем гипотезу, когда ее следует отвергнуть, то совершаем другую ошибку. Не зная заранее, верна или нет гипотеза, мы должны решить, какую цену мы готовы заплатить за первую ошибку, а какую за вторую. Иногда одна ошибка серьезнее, чем другая, и в таких случаях мы должны решить, принимать или отвергать неподтвержденную гипотезу, выбирая меньшее из двух зол.

Допустим, вы хотите использовать определенную торговую систему, но не уверены, будет ли она работать при торговле в режиме реального времени. Здесь гипотеза состоит в том, что торговая система будет хорошо работать в режиме реального времени. Вы решаете принять гипотезу и торговать с помощью этой системы. Если гипотеза не подтвердится, то вы совершите вторую ошибку и заплатите за нее проигрышами.

С другой стороны, если вы решите не торговать по системе, которая на самом деле окажется прибыльной, то совершите первую из рассмотренных нами ошибок. В этом случае цена, которую вы заплатите, — это упущенные прибыли. Что лучше? Ясно, что упущенная прибыль. Хотя из этого примера можно сделать вывод, что если вы собираетесь торговать по системе в режиме реального времени, то ей, конечно, надо быть прибыльной на прошлых данных, но есть и другой мотив для использования этого примера. Если мы допустим, что зависимость есть, когда фактически ее нет, то совершим вторую ошибку. Цена, которую мы заплатим, — реальный убыток. Однако если мы допустим, что зависимости нет, а она на самом деле есть, то совершим первую ошибку и упустим прибыль. Согласитесь, что лучше упустить прибыль, чем понести реальные убытки. Поэтому, пока не будет убедительного доказательства зависимости, вам лучше исходить из того, что прибыли и убытки в торговле (неважно, по механической системе или нет) не зависят от предыдущих результатов. Здесь, как может показаться, существует некий парадокс. Во-первых, если существует зависимость в сделках, то система подоптимальна. Однако о зависимости никогда нельзя говорить с полной уверенностью. Если мы будем действовать, как будто зависимость есть (когда фактически ее нет), мы совершим более дорогостоящую ошибку, чем если бы действовали, как будто зависимости нет (когда фактически она есть). Допустим, что в системе с историей из 60 сделок на основе серийного теста обнаружена зависимость с доверительным уровнем 95%. Мы хотим, чтобы наша система была оптимальной, поэтому соответствующим образом изменяем ее пра-вила, чтобы использовать замеченную зависимость. Предположим, после этого у нас остается 40 сделок, и зависимости больше нет, в результате, мы приходим к выводу, что правила системы оптимальны. Теперь при 40 сделках мы получаем более высокое оптимальное Г, чем при 60 (более подробно об оптимальном { — далее в этой главе). Если вы будете торговать по этой системе с новыми правилами, использующими зависимость, применяя более высокое сопутствующее оптимальное Г, а зависимости на самом деле нет, то результат будет ближе к 60 сделкам, чем к 40 сделкам, в которых были показаны лучшие результаты.
Таким образом, Г, которое вы выбрали, будет сдвинуто вправо, что выразится в потерях, которые вы понесете из-за того, что предположили зависимость. Если зависимость присутствует, тогда вы будете ближе к пику кривой Г, допускающей, что зависимость существует. Если бы вы решили, что зависимости нет, когда фактически она есть, то вы были бы слева от пика кривой Г, и ваша система была бы подоптимальной (но вы потеряете меньше, чем если бы были справа от пика).

Короче говоря, ищите зависимость. Если она обнаружится с достаточно высокой вероятностью, тогда измените правила системы, чтобы использовать эту зависимость. В противном случае, при отсутствии убедительного статистического доказательства зависимости, считайте, что ее не существует (и вы понесете меньшие потери, если фактически зависимость все же существует).

<< | >>
Источник: РАЛЬФ ВИНС. Математика управления капиталом. 2006

Еще по теме {foto2} {foto3} {foto4} {foto5} rn Рисунок 1-3 Отрицательная корреляция (г = -1,00) Теперь посмотрите на рисунок 1-3. Он показывает две последовательности, которые находятся точно в противофазе. Когда одна линия идет вверх, другая следует вниз (и наоборот). Мы называем это отрицательной корреляцией. Формула для коэффициента линейной корреляции г двух последовательностей Х и У такова (черта над переменной обозначает среднее арифметическое значение): а =:

- Авторское право - Аграрное право - Адвокатура - Административное право - Административный процесс - Антимонопольно-конкурентное право - Арбитражный (хозяйственный) процесс - Аудит - Банковская система - Банковское право - Бизнес - Бухгалтерский учет - Вещное право - Государственное право и управление - Гражданское право и процесс - Денежное обращение, финансы и кредит - Деньги - Дипломатическое и консульское право - Договорное право - Жилищное право - Земельное право - Избирательное право - Инвестиционное право - Информационное право - Исполнительное производство - История - История государства и права - История политических и правовых учений - Конкурсное право - Конституционное право - Корпоративное право - Криминалистика - Криминология - Маркетинг - Медицинское право - Международное право - Менеджмент - Муниципальное право - Налоговое право - Наследственное право - Нотариат - Обязательственное право - Оперативно-розыскная деятельность - Права человека - Право зарубежных стран - Право социального обеспечения - Правоведение - Правоохранительная деятельность - Предпринимательское право - Семейное право - Страховое право - Судопроизводство - Таможенное право - Теория государства и права - Трудовое право - Уголовно-исполнительное право - Уголовное право - Уголовный процесс - Философия - Финансовое право - Хозяйственное право - Хозяйственный процесс - Экологическое право - Экономика - Ювенальное право - Юридическая деятельность - Юридическая техника - Юридические лица -