<<
>>

РАЗДЕЛ 3.1. Модели принятия решений об объемах закупок фирмой - оптовым покупателем в зависимости от изменения отпускных цен производителя и спроса конечных покупателей

Центральное место в системе торговли занимает оптовая торговля. Оптовый покупатель (продавец) - хозяйствующий субъект, стоящий в торговой цепочке между производителем продукции и хозяйствующими субъектами или физическими лицами, приобретающими товар для его непосредственного использования или потребления.
От ценовой политики оптового продавца существенным образом зависит объем продаж товара данного вида. Производитель также может проводить на рынке определенную ценовую политику, например, стимулируя спрос путем уменьшения отпускной цены. Эти соображения приводят участников рынка, за исключением, пожалуй, конечного потребителя, к необходимости построения умозрительных или формальных моделей оптовых закупок и продаж, связывающих их объем с изменением уровня закупочных или отпускных цен. В данном разделе будут рассмотрены две модели принятия решений об объемах закупок и об уровне розничных цен фирмой - оптовым покупателем (дилером) в зависимости от изменения

отпускных цен производителя и спроса конечных покупателей при различных объемах оптовых закупок.

Рассмотрим следующую модель.

Имеется три разнородных участника рынка:

а) производитель;

б) оптовый продавец (дилер);

в) покупатель (покупатели).

Дилер закупает товар (оборудование) непосредственно у производителя по отпускным ценам. Покупатель может закупать товар только у дилера. В этом смысле дилер фактически является эксклюзивным дистрибьютором.

Зависимость суммарного покупательского спроса V от дилерской продажной цены за единицу продукции q определяется функцией V(q). Для данной модели будем считать ее линейной.

Выбор линейной зависимости объясняется просто. Допустим, что эксперт (менеджер дилерской фирмы) может с достаточной степенью точности определить:

а) ту цену (b2) на товар, при которой его не будет покупать ни один покупатель;

б) то количество товара (V0), которое может быть продано при минимальной цене на товар - минимальной оптовой отпускной цене производителя (bi).

На основании этих данных может быть построена прямая зависимости спроса от цены V(q) (рис.

3.1.1).

Известна зависимость отгрузочных цен производителя (b) от объема дилерских закупок (V) - b(V). Эта зависимость может быть задана в виде ступенчатой функции, убывающей по V. Максимальное значение цены b(V) - b0 имеет место при закупке 1 единицы продукции (оборудования) или минимально целесообразного с точки зрения издержек дилера количества расходных материалов или запасных частей, а минимальное - при минимальной отгрузочной цене производителя - b1, определяемой объемом переменных издержек, затрачиваемых производителем на производство одного изделия.

В рамках настоящей модели зависимость цены (b) от объема закупок V (вообще говоря, идет речь об объеме закупок в течение

какого-то определенного временного периода, например, года) может быть аппроксимирована ломаной, состоящей из двух участков:

Рис. 3.1.1.

а) прямой, убывающей от точки с координатами (V=1, b=b0), соответствующей отгрузочной цене производителя при закупке 1 единицы оборудования (минимально целесообразного с точки зрения постоянных издержек дилера количества продукции производителя), до точки с координатами (V=Vb b=b1), соответствующей объему закупок V1, начиная с которого производитель продает товар дилеру по минимально возможной цене b1.

б) прямой, параллельной оси V при b=b1. Эта прямая соответст-вует любому объему продаж производителя дилеру, начиная с V1 (если быть абсолютно точным, по оборудованию, начиная с V1+1). Продажа производится по цене b=b1.

На рис. 3.1.1 представлены зависимости V(q) и b(V) для следующих значений параметров: Vj =51, V0=100, b0=1.0, bi=0.5, b2=2.0.

Сформулируем задачу.

Необходимо определить величину оптовых закупок у производителя, производимых дилером, - Vmax, исчисляемую в стоимостном

или натуральном выражении, при которой обеспечивается максимизация прибыли дилера, рассчитываемой по формуле:

P=(q-b)V,

где q - продажная цена, по которой продавец продает товар покупателю,

b - отпускная цена производителя при объеме закупки V, V - объем оптовой закупки.

Необходимо решить следующую оптимизационную задачу: P = (q(V)- b(V))V ® max

Решение задачи.

На основе вышеизложенного кривая b(V) описывается следующими соотношениями:

(3.1.1)

b(V H^

v y b v > V

f(b - b,Vx V(1 - V)+[(bo - bxV(1 - V)]V, 1 ? V ? V (a) \' (б) Кривая V(q) описывается соотношением

Vo

+

q.

V (q) = V0b2

b1 - b2

b2 - b1

Разрешим это соотношение для q относительно V:

q = b2 - [(b2 - b1)Vo]V.

Нам необходимо определить то значение V, при котором достигается максимум функции P по V:

P(V) = (q(V) - b(V))V ® max

Решим эту задачу сначала для случая, когда функция b(V) имеет вид b(V)= b1 (случай (б)). Откуда

b2 -b

г \\

1 V - b1

b2 -

V

Vo

Vo

dP = 4, - д-V = 0

dV

Откуда V=Vo/2. Поскольку

P(V ) =

tt

f = —2bbl—bk < 0, I dV ) V„

т.к. b2 > b1 из смысла задачи, то в точке V=V0/2 функция P(V) имеет максимум.

Если V0/2 > V1, то точка максимума при V = V0/2 является допустимой, если нет - то нет.

Решим теперь задачу для случая, когда функция b(V) имеет вид (а). При этом

P(V) = к — *2сА V — b1— b0V1 + ^ V1V 12 V 1—V1 1—V1 J

dp = b2 — 2 ^ V — b1 — b0V1 + 2 ^ V dV 2 V0 1 —V1 1 —V1

откуда

V = V .= V0 x, (b2 — b )V1 + b1 — b2

2 (b2 — b )(V1 — 1) + V (b — b1)

dPl = 2b0—b1 — 2b2—b1 4dV 0 1 — V1 V0 ¦

Поскольку из смысла задачи b0 > b1, b2 > b1, V1 > 1, то (dP/dV)\' < 0, и значение V = V* соответствует максимуму функции P(V).

Если для V* имеет место V* <= V1, то точка максимума при V=V* является допустимой, если нет - то нет.

Если обе точки максимума - при V=V0/2 и при V=V* являются допустимыми, то для решения задачи

P(V) ® max

V

необходимо сравнить значения целевой функции P(V) при V=V0/2 и при V=V*. То значение V, для которого P(V) будет больше, и будет являться точкой максимума.

Таким образом, величина Vmax = arg max{P(V0/2), P(V*)} и будет являться той величиной дилерских закупок у производителя, которая обеспечит дилеру максимальную прибыль.

Только что сформулированную и разрешенную задачу назовем «моделью неинформированного покупателя».

Рассмотрим другую задачу, которую назовем «модель информированного покупателя».

Данная модель строится на следующих предположениях:

I. Покупателю (покупателям) известны:

Отпускные цены производителя b и их зависимость от объема оптовых закупок V.

Объем оптовых закупок продавца (дилера) V.

Покупателя, располагающего такой информацией, будем называть «информированным».

Предположим, что информированный покупатель считает для себя нормальной цену

q = (1+k)b(V),

которая на величину kb(V) выше отпускной цены производителя b(V) и включает в себя все постоянные и переменные издержки продавца (дилера).

Спрос V со стороны покупателей на товар, продаваемый дилером по цене q=(1+k)b(V) равен спросу на товар, отпускаемый (продаваемый) производителем по цене b(V). Понятно также, что покупатели не могут закупать товар непосредственно у производителя.

При значениях продажной цены продавца q больших чем (1+k)b(V) при объеме оптовых закупок V спрос W на продукцию (оборудование) со стороны покупателей начинает убывать. Покупатели, например, могут переключить свой спрос на продукцию других производителей.

В рамках данной модели необходимо определить объем оптовых закупок V и продажную цену q*, которые обеспечат дилеру максимум прибыли.

Эксперты-менеджеры фирмы-продавца (дилера) в принципе могут оценить величину m=q/b(V), которая соответствует тому зна-чению цены q, при котором спрос W на продукцию (оборудование), закупаемую в количестве V по цене b(V) и продаваемую дилером по цене q будет равен нулю (см. рис.2).

Поскольку при значении цены q=(1+k)b(V) спрос W со стороны покупателей на продукцию, закупаемую дилером в объеме V, равен V, а при цене q=mb(V) равен 0, то мы можем определить коэффициенты линейной зависимости W(q), в качестве параметров которой выступают величины V и b(V).

Определим коэффициенты a и c прямой

W= aq + c,

проходящей через две точки на координатной плоскости (q,W) с координатами (mb(V), 0) и ((1+k)b(V), V). Получаем: _ V ; _ Vm ~ b(V)(1 + k - m)\' m -1 - k

Откуда

W _{(mb(V)-q) V

[ b(V )(m -1 - k )J

На рис. 3.1.2 представлены зависимости b(V), (1+k)b(V), W(q) для следующих значений коэффициентов: V1=51, V0=100, b0=1.0, b1=0.5, k=0.5, m=3.0.

На основе вышесказанного в качестве критерия будем использовать максимум прибыли, задаваемый соотношением: (3.1.2) P(q,V)_ qW(q, V)-b(V)V ® max

qV

Решение задачи.

Сначала при фиксированном V (V=V*) и, соответственно, b(V) нужно рассмотреть критерий вида (см.

рис. 3.1.3):

q

*

q

b(V*)\r\n^

к W(q) \r\n(1+k)b(V)^S\\ \r\n \r\n 4t >\r\nW V*

W

(3.1.3) Имеем

Рис. 3.1.3. P(q,V)_ qW(q,W)® max

q

b(V)- q

m

V

(3.1.4) P(q,W)_ qW _ q\\

b(V )(m -1 - k)

dP _ mb(V)- 2q _ 0 dq ~ b(V)(m -1 - k) _ \'

q* = mb(V)/2.

откуда (3.1.5)

\' dP ^ v dq 0

Определим знак второй производной:

V

_ -2

b(V )(m -1 - k)\'

Поскольку по смыслу задачи m - k - 1 >0, то

rr

f dP ^

dq.

и в точке q = q* достигается максимум функции P(q,W).

Подставляем выражение для q из (3.1.5) в (3.1.4) и получаем выражение для W (W), соответствующее максимуму функции P(q,W):

ТЖГ* тжг( Л mV W = W (q 1=^ г;

V \' 2(m — 1 — k) Рассмотрим теперь критерий (3.1.2):

P(q, V) = qW(q, V) — b(V)V ® max

q,v

Подставляем в него найденное значение q = q*, получаем:

b(V)

m

m

mV

—b(V)V =

P(V ) =

—1

b(V )V ® max

V

4(m — 1—k) оотношен

V, 1 < V < V (a)

2 2(m — 1 — k) Функция b(V) как и ранее задается соотношениями (3.1.1): b1 — b0V1 , b0 — b1

- + -

b(V ) =

1—V 1—V

(б)

1А, v > V

Рассмотрим сначала случай (б).

В этом случае функция P(V) является линейной по V и имеет следующий вид:

P(V)=

bvV.

m

—1

4(m — 1 — k)

Максимум P(V) достигается при максимально возможном значении V, в нашем случае при V = V0.

2

m

bV0.

—1

P(V ) =

4(m — 1 — k)

Рассмотрим теперь случай (а).

m

P(V ) =

—1

4(m — 1 — k)

bizM.+Vib V 1V

dP dV

m

-1

4(m -1 - k)

. —V1 1—V1 J b1 - W + 2 V 1 = 0.

1 - V1

откуда

I 1 - V

V * =

boVt - b,

2(bo - b)"

Для выяснения достигается ли в точке V = V* максимум или минимум функции P(V), необходимо определить знак 2-й производной P(V по Vв точке V = V*:

А dP

m

bo - b1

=2

-1

4(m -1 - k)

dV

= 0.

1 - V1

Поскольку b0 > b1 и V1 > 1 по смыслу задачи, то сомножитель

< 0,

bo - b1

и для выяснения знака 2-й производной необходимо определить знак сомножителя

m

-1,

4(m -1 - k)

если он > 0, то в точке V = V* достигается максимум функции P(V), если нет - то нет.

Следует отметить, что для приведенных выше значений m=3.0 и k=0.5 этот сомножитель является положительным.

Допустим, что в точке V = V* достигается максимум функции P(V), тогда для решения задачи («информированный покупатель») необходимо сравнить значения критерия P(V) при V = V0 и V = V*: P(V0) и P(V*).

То значение V, при котором критерий P будет иметь большее значение, и будет являться решением задачи.

Величина q , определяемая соотношением (3.1.5) и величина Vmax = arg max{P(V0), P(V)} являются, соответственно, тем значением продажной цены дилера и объема дилерских закупок, которые максимизируют прибыль дилера и являются, соответственно, решением задачи, которая выше была обозначена как «модель информированного покупателя».

В данном разделе были рассмотрены две модели принятия решений об объемах закупок и об уровне розничных цен (конечных цен первичного рынка), устанавливаемых оптовым покупателем в зависимости от изменения отпускных цен производителя и спроса конечных покупателей при различных объемах оптовых закупок. Главным содержательным отличием этих моделей друг от друга является учет различной степени информированности покупателя о динамике отпускных (оптовых) цен производителя (модели "неинформированного" и "информированного" покупателей).

Построение подобного типа моделей используется во внутрифирменном управлении фирмы-дилера менеджерами по продажам и сотрудниками финансовых служб при принятии решений об объемах оптовых закупок и об уровне розничных цен.

<< | >>
Источник: Заложнев А.Ю.. Прикладные модели и методы внутрифирменного управления М.: ИПУ РАН,2003. - 167 с.. 2003

Еще по теме РАЗДЕЛ 3.1. Модели принятия решений об объемах закупок фирмой - оптовым покупателем в зависимости от изменения отпускных цен производителя и спроса конечных покупателей:

- Авторское право - Аграрное право - Адвокатура - Административное право - Административный процесс - Антимонопольно-конкурентное право - Арбитражный (хозяйственный) процесс - Аудит - Банковская система - Банковское право - Бизнес - Бухгалтерский учет - Вещное право - Государственное право и управление - Гражданское право и процесс - Денежное обращение, финансы и кредит - Деньги - Дипломатическое и консульское право - Договорное право - Жилищное право - Земельное право - Избирательное право - Инвестиционное право - Информационное право - Исполнительное производство - История - История государства и права - История политических и правовых учений - Конкурсное право - Конституционное право - Корпоративное право - Криминалистика - Криминология - Маркетинг - Медицинское право - Международное право - Менеджмент - Муниципальное право - Налоговое право - Наследственное право - Нотариат - Обязательственное право - Оперативно-розыскная деятельность - Права человека - Право зарубежных стран - Право социального обеспечения - Правоведение - Правоохранительная деятельность - Предпринимательское право - Семейное право - Страховое право - Судопроизводство - Таможенное право - Теория государства и права - Трудовое право - Уголовно-исполнительное право - Уголовное право - Уголовный процесс - Философия - Финансовое право - Хозяйственное право - Хозяйственный процесс - Экологическое право - Экономика - Ювенальное право - Юридическая деятельность - Юридическая техника - Юридические лица -