<<
>>

Планирование сценария

Специалисты, которые в силу своей профессии занимаются прогнозированием (экономисты, аналитики фондового рынка, метеорологи, правительственные чиновники и т. д.), довольно часто ошибаются, но надо признать, что большинство решений, которые человек должен принять в жизни, обычно требуют прогноза.

Здесь есть две ловушки. Во-первых, люди делают слишком оптимистичные предположения о будущем. Большинство из нас уверены, что в этом месяце мы скорее выиграем в лотерею, чем погибнем в автокатастрофе, даже если вероятность последнего выше. Это верно не только на уровне отдельного лица, но и на уровне группы. Когда люди работают вместе, они стремятся видеть благоприятный результат как наиболее вероятный результат (иначе не было бы смысла работать, пока, конечно, все мы не стали автоматами, безрассудно надрывающимися на «тонущих кораблях»).

Вторая и более пагубная ловушка состоит в том, что мы делаем прямые прогнозы, например пытаемся предсказать цену галлона бензина через два года или пытаемся предсказать, что произойдет с нашей карьерой, кто будет следующим президентом, каким будет следующий стиль, и так далее. Что бы мы ни говорили о будущем, мы стремимся думать о единственном, наиболее вероятном результате. Таким образом, когда необходимо принять решение или самостоятельно, или коллективно, мы принимаем его, основываясь на том, что прогноз есть единственный наиболее вероятный результат. В итоге, мы часто получаем неприятные сюрпризы.

Планирование сценария отчасти решает эту проблему. Сценарий просто является возможным прогнозом, одним из путей, по которому могут развиваться события. Планирование сценария предполагает набор сценариев для покрытия возможного спектра исходов. Конечно, полный спектр никогда не будет получен, но вы можете рассмотреть столько сценариев, сколько сочтете нужным. Таким образом, в противоположность прямому прогнозу наиболее вероятного результата вы можете подготовиться к будущему.

Более того, планирование сценария подготовит вас к тому, что может быть в противном случае неожиданным событием.

Допустим, вы занимаетесь долгосрочным планированием для компании, которая производит некий продукт. Вместо того, чтобы сделать один наиболее вероятный прямой прогноз, используйте метод планирования сценария. Методом «мозгового штурма» вместе с коллегами определите возможные пути развития событий. Что будет, если вы не сможете получить достаточно сырья, чтобы произвести этот продукт? Как изменится ситуация, если один из ваших конкурентов обанкротится? Как будут развиваться события, если на рынке появится новый конкурент? Что произойдет, если вы серьезно недооцените спрос на этот продукт? Что будет, если где-либо начнется война? А если начнется ядерная война? Так как каждый сценарий возможен, его нужно рассматривать серьезно. Теперь надо понять, что вы будете делать после того, как определите эти сценарии. Вы должны определить цель, которую хотите достичь при том или ином сценарии. В зависимости от сценария цель не обязательно должна быть положительной. Например, при пессимистическом сценарии это могут быть просто ремонтно-восстановительные работы на предприятии. После того как вы определите цель для данного сценария, надо составить план на случай непредвиденных ситуаций, относящихся к этому сценарию, для достижения необходимой цели. Например, как уже было сказано, при невероятно мрачном сценарии вашей целью могут быть ремонтно-восстановительные работы, и вам надо иметь план, чтобы минимизировать ущерб. Помимо всего прочего, планирование сценария даст вам алгоритм, которому надо следовать, если определенный сценарий реализуется. Существует тесная связь между планированием сценария и оптимальным Г Оптимальное { позволяет разместить оптимальное количество ресурсов при определенном наборе возможных сценариев. На самом деле, реализуется только один сценарий, даже если мы планируем их несколько. Планирование сценария ставит нас в ситуацию, когда необходимо принять решение, какое количество ресурсов размещать сегодня при возможных сценариях на завтра.

Эта количественная оценка последствий — поистине «сердце» планирования сценария.

Чтобы определить, сколько ресурсов разместить при наличии определенного набора сценариев, мы можем использовать еще один параметрический метод поиска оптимального Г Сначала следует описать каждый сценарий. Далее мы должны оценить вероятность (это число между 0 и 1) реализации каждого сценария. Сценарии с вероятностью 0 мы не будем рассматривать. Отметьте, что вероятность каждого сценария уникальна. Допустим, вы принимаете решения в производственной корпорации АБВ. Два сценария (из нескольких) выглядят следующим образом. При одном сценарии корпорация АБВ подает документы на банкротство с вероятностью 0,15, в другом сценарии АБВ уходит с рынка из-за напряженной конкуренции с иностранными корпорациями с вероятностью 0,07. Теперь мы должны понять, включает ли первый сценарий заявление о банкротстве из-за второго сценария, т.е. напряженной конкуренции. Если это так. то вероятность первого сценария не учитывает вероятность второго сценария, и мы должны уменьшить вероятность первого сценария до 0,08 (0,15 -- 0,07). Отметьте также, что уникальность вероятности важна для каждого сценария, чтобы сумма вероятностей всех рассматриваемых сценариев была равна в точности 1, а не 1,01 или 0,99.

Для каждого сценария мы определяем вероятность его осуществления. Следует также определить конечный результат, то есть численное значение. Оно может быть в долларах или лотах — в чем угодно. Однако ваши выходные данные должны быть в тех же единицах, что и входные данные. Чтобы использовать этот метод, вы должны обязательно иметь, по крайней мере, один сценарий с отрицательным результатом. Если вы хотите знать размер ресурса, который следует разместить сегодня при возможных сценариях на завтра, и не имеете отрицательного сценария, тогда следует разместить 100% этого ресурса. Без сценария с отрицательным результатом маловероятно, что данный набор сценариев реалистичен.

Последнее условие использования этого метода состоит в том, что математическое ожидание, сумма всех результатов, умноженных на их соответствующие вероятности, должно быть больше нуля.

N

(1.03) мо=?(Рі*А)

І=1

где Р = вероятность сценария ц А = результат сценария ц

N == общее число рассматриваемых сценариев.

Если математическое ожидание равно нулю или отрицательное, метод нельзя использовать. Это не означает, что нельзя использовать само планирование сценария. Можно и нужно. Однако оптимальное f может быть получено только в том случае, если математическое ожидание больше нуля. Когда математическое ожидание равно нулю или отрицательное, мы не должны размещать ресурсы.

И наконец, вы должны рассмотреть максимально возможный спектр результатов. Другими словами, следует рассмотреть 99% возможных исходов. Многие сценарии можно сделать шире, так что вам не надо будет расписывать 10 000 сценариев, чтобы охватить 99% спектра. При расширении сценариев не следует слишком упрощать ситуацию, выбрав только три сценария: оптимистический, пессимистический и нейтральный. В этом случае полученные ответы будут слишком грубы, чтобы иметь какую-либо практическую ценность. Захотите ли вы искать оптимальное f для торговой системы по трем сделкам?

Какое количество сценариев оптимально? Используйте то количество, с которым вы справитесь. Здесь хорошим помощником будет компьютер. Допустим, речь идет о компании АБВ и о размещении ее нового продукта на рынке отсталой далекой страны. Рассмотрим пять возможных сценариев (в действительности сценариев должно быть больше, но мы возьмем пять для примера). Эти пять сценариев отражают то, что может произойти в данной стране в будущем, — то есть вероятность определенных событий и прибыль или убыток от инвестирования.

Сценарий Вероятность Результат\r\nВойна 0,1 -$500 000\r\nКризис 0,2 -$200 000\r\nЗастой 0,2 0\r\nМир 0,45 $500 000\r\nПроцветание 0,05 $1000000\r\n Сумма 1,00 \r\n

Таким образом, сумма вероятностей равна 1. Обратите внимание, что у нас есть 1 сценарий с отрицательным результатом, но математическое ожидание больше нуля:

(0,1 * -$500 000) + (0,2 * -$200 000) +... = $185 000

С таким набором сценариев мы можем использовать данный метод.

Отметьте, что если бы мы использовали метод наиболее вероятного результата, то пришли бы к заключению, что в этой стране скорее всего будет мир, и действовали бы, исходя из этой единственной возможности, только расплывчато осознавая наличие других исходов.

Рассчитаем оптимальное ? Как мы уже знаем, оптимальное f (это число между О и 1) максимизирует среднее геометрическое: \r\nСреднее геометрическое = Т\\?11л (1 / ^ Р.)

N

ПНРЯ;

1=1

поэтому

;=1

НРЯ = (1 +(А./\\У/-П))лР., \r\n

\r\n(4.16) Среднее геометрическое = (П(1 + (А/ (XV/ -{))) л Р.) л (1 / 2р,)

Далее, мы можем рассчитать фактическое TWR: (4.17) TWR= Среднее геометрическоеЛХ,

где К= число сценариев;

TWR= относительный конечный капитал;

HPR= прибыль за период удержания позиции для сценария 1;

А = результат сценария 1;

Р.= вероятность сценария 1;

W= наихудший результат среди всех сценариев К;

Х= число, характеризующее повторение этого сценария, когда мы инвестируем Х раз.

TWR, полученное из уравнения (4.14), является промежуточным значением для расчета среднего геометрического. После того как мы найдем среднее геометрическое, фактическое TWR можно получить с помощью уравнения (4.17). Мы можем произвести расчеты по этим уравнениям следующим образом. Сначала выберем схему оптимизации, то есть способ поиска Г, максимизирующего уравнение. Можно сделать это с помощью подбора Ют 0,01 до 1, используя метол итераций или параболическую интерполяцию. Затем мы должны определить наихудший возможный результат для всех рассматриваемых сценариев независимо от того, насколько малы вероятности подобных сценариев. В примере с корпорацией АБВ наихудшие ожидаемые потери — это -500 000 долларов. Теперь для каждого сценария мы должны сначала разделить наихудший возможный результат на отрицательное Г В примере с корпорацией АБВ мы собираемся просмотреть значения Ют 0,01 до 1. Начнем со значения Г=0,01. Теперь, если мы разделим наихудший возможный результат рассматриваемых сценариев на отрицательное значение Г, то получим:

-$500 000 / -0,01 = $50 000 000

Для каждого сценария разделим его результат на полученное только что значение.

Так как исход первого сценария является наихудшим с убытком 500 000 долларов, то:

-$500 000 / $50 000 000 = -0,01 Теперь прибавим это значение к 1:

1 + (-0,01) = 0,99

Наконец, возведем полученный ответ в степень вероятности осуществления данного сценария (в нашем примере 0,1):

0,99Л0,1=0,9989954713

Затем перейдем к следующему сценарию под названием «Кризис» с вероятностью 0,2 проигрыша 200 000 долларов. Наш результат наихудшего случая все еще -$500 \r\n000. Значение Г, с которым мы работаем, по-прежнему 0,01, поэтому число, на которое надо разделить результат этого сценария, составляет 50 000 000 долларов: -$200 000/$50 000 000 = -0,004

Проведем дальнейшие вычисления для получения НРЯ: 1 + (-0,004) = 0,996 0,99Л0,2 = 0,9991987169

Если мы рассмотрим остальные сценарии при тестируемом значении Г=0,01, то найдем три значения НРЯ, соответствующие последним 3 сценариям:

Застой 1,0

Мир 1,004487689

Процветание 1,000990622

После того как найдены все НРЯ для данного значения Г, необходимо перемножить полученные НРЯ:

0,9989954713*0,9991987169*1,0*1,004487689 * 1,000990622=1,003667853

Мы получили промежуточное TWR = 1,003667853. Следующим шагом будет возведение этого значения в степень, равную единице, деленной на сумму вероятно-стей. Так как сумма вероятностей составляет 1, то, чтобы получить среднее геометрическое, TWR возведем в степень 1. Таким образом, среднее геометрическое равно в этом случае TWR, то есть 1,003667853. Если, однако, убрать ограничение. что каждый сценарий должен иметь уникальную вероятность, то можно получить сумму вероятностей больше 1. В таком случае, чтобы получить среднее геометрическое, надо возвести TWR в степень, равную единице, деленной на эту сумму вероятностей.

Ответ, полученный в нашем примере, является средним геометрическим. соответствующим значению Г= 0,01. Теперь перейдем к значению Г= 0,02 и повторим весь процесс, пока не найдем среднее геометрическое, соответствующее этому Г Мы будем продолжать, пока не дойдем до такого значения Г, которое даст наивысшее среднее геометрическое.

В нашем примере наивысшее среднее геометрическое достигается при Г=0,57 и равно 1,1106. Разделив возможный результат наихудшего сценария (-$500 000) на отрицательное оптимальное Г, мы получим 877 192,35 доллара. Другими словами, если корпорации АБВ надо разместить на рынке новый продукт в этой далекой стране, следует инвестировать именно эту сумму. С течением времени и развитием событий, когда изменятся возможные исходы и вероятности, изменится также и сумма Г Чем чаще корпорация АБВ будет учитывать эти изменения, тем более правильными будут ее решения. Отметьте. что если корпорация АБВ инвестирует в этот проект меньше 877 192,35 доллара. тогда она находится левее пика кривой Г Это аналогично ситуации, когда у трейдера открыто слишком мало контрактов (по сравнению с оптимальным Г). Если корпорация АБВ вкладывает в проект большую сумму, это аналогично ситуации, когда у трейдера открыто слишком много позиций.

Количество, рассмотренное здесь, является количеством денег, но это могут быть не только деньги, и метод будет работать. Данный подход можно использовать для любого количественного решения в среде благоприятной неопределенности .

Если вы создадите различные сценарии для фондового рынка, оптимальное Г полученное с помощью этого метода, даст вам процент средств, которые надо в данный момент инвестировать в акции. Например, если Г= 0,65, то 65% вашего баланса должно быть на рынке, а оставшиеся 35%, например, в деньгах. Этот подход даст вам наибольший геометрический рост капитала. Конечно, результат будет зависеть от того, какие входные данные вы использовали в системе (сценарии. их вероятности осуществления, выигрыши и проигрыши, издержки). Все сказанное ранее об оптимальном { применимо здесь, и это означает также, что ожидаемые проигрыши могут достигать 100%. Если вы осуществляете планирование сценария для размещения активов, то должны ожидать, что около 100% активов. размещенных в соответствии с рассматриваемым сценарием, могут быть потеряны в какое-либо время в будущем. Например, вы используете данный метод, чтобы определить сумму средств, предназначенных для инвестирования в акции. Допустим, вы приходите к выводу, что 65% средств должно быть инвестировано в акции, а оставшиеся 35% в безрисковые активы. Следует ожидать, что проигрыш в будущем может достичь 100% суммы, размещенной на фондовом рынке. Другими словами, вы должны быть готовы, что в какой-либо точке в будущем почти 100% активов от ваших 65%, размещенных в акции, будут проиграны. Однако именно таким образом вы достигнете максимального геометрического роста. Ту же процедуру можно использовать для альтернативного параметрического метода определения оптимального { в торговле. Допустим, вы принимаете торговые решения, основываясь на фундаментальных данных. Вы намечаете различные сценарии, которые могут произойти в процессе торговли. Чем больше сценариев и чем точнее сценарии, тем лучше будут полученные результаты. Предположим, вы решили купить муниципальные облигации, но при этом не планируете удерживать их до срока погашения. Вы можете рассмотреть множество сценариев будущих событий и использовать эти сценарии для определения оптимального размера инвестиций.

Концепцию планирования сценария для определения оптимального { можно использовать во многих областях: от военных стратегий до определения оптималь-ного уровня участия в подписке на акции или оптимальной предоплаты за дом. Этот метод, вероятно, является лучшим и уже точно самым легким для тех, кто не использует механические решения при входе и выходе с рынка. Трейдеры, которые торгуют по фундаментальным данным, графикам, волнам Эллиотта или с помощью любого другого метода, требующего субъективного суждения, могут найти оптимальные { с помощью этого подхода — он намного проще, чем поиск значений параметров распределения. Арифметическое среднее ИРЯ группы сценариев можно рассчитать следующим образом:

(4.18) АНРЯ= (Е (1 + (А/ (\\У / -О)) *

где N = число сценариев;

А = результат (выигрыш или проигрыш) сценария 1;

Р = вероятность сценария 1;

W= наихудший результат среди всех сценариев.

ЛИРЯ будет важно позднее, при поиске эффективной границы совокупности не-скольких рыночных систем, когда необходимо будет определить ожидаемую при-быль (арифметическую) данной рыночной системы. Эта ожидаемая прибыль равна ЛИРЯ-1. Рассмотренный метод не обязательно должен быть основан на параметрическом подходе. Возможен и эмпирический подход. Другими словами, мы можем взять отчет о сделках данной рыночной системы и использовать каждую из этих сделок в качестве сценария, который может произойти в будущем. Величина прибыли или убытка будет выходным результатом данного сценария. В этом случае каждый сценарий (сделка) имеет равную вероятность осуществления — 1/N, где N — общее число сделок (сценариев). В результате мы получим эмпирическое оптимальное f. Когда есть несколько решений на основе нескольких сценариев, выбор того. чье среднее геометрическое, соответствующее оптимальному f, самое большое. максимизирует решение в асимптотическом смысле. Зачастую это будет происходить вопреки общепринятым правилам принятия решения, таким как Правило Гурвица, максимакс, минимакс, минимаксная потеря (minimax regret) и наивысшее математическое ожидание. Предположим, мы должны выбрать одно их двух возможных решений, которые назовем «белым» и «черным». Белое решение представляет следующие возможные сценарии:

Белое решение

Сценарий Вероятность Результат

А 0,3 -20

В 0,4 0

С 0,3 30

Математическое ожидание = $3,00 Оптимальное f = 0, 17 Среднее геометрическое = 1,0123

Черное решение представляет следующие сценарии:

Черное решение

Сценарий Вероятность Результат

А 0,3 -10

В 0,4 5

С 0,15 6

D 0,15 20

Математическое ожидание = $2,90

Оптимальное Г=0,31

Среднее геометрическое = 1,0453

Многие выбрали бы белое решение, так как оно имеет большее математическое ожидание. При белом решении вы можете ожидать «в среднем» выигрыш в 3 доллара против выигрыша черного решения в 2,90 доллара. Однако выбор черного решения будет более правильным, так как оно дает наибольшее среднее геометрическое. При черном решении можно ожидать «в среднем» выигрыш в 4,53% (1,0453 - 1) против выигрыша белого решения в 1,23%. При реинвестировании черное решение, в среднем, выиграет в три раза больше, чем белое решение! Вы можете возразить, отметив, что мы не реинвестируем по тому же сценарию каждый раз, и можно добиться большего, если всегда выбирать наивысшее арифметическое математическое ожидание для каждого представленного набора. Мы будем принимать решение, основываясь на большем арифметическом математическом ожидании, только в том случае, если не собираемся реинвестировать вообще. Но так как почти всегда деньги, которыми мы рискуем сегодня, будут снова с риском вложены в будущем, а деньги, выигранные или проигранные в прошлом, влияют на то, чем мы можем рисковать сегодня (среда геометрических следствий), для максимизации долгосрочного роста капитала мы должны принимать решения, исходя из среднего геометрического. Даже если сценарии, которые будут представлены завтра, не будут такими же, как сегодня, используя наибольшее среднее геометрическое, мы всегда максимизируем наши решения. Это аналогично процессу зависимых попыток, например игре в «очко». Каждая раздача изменяет вероятности, поэтому оптимальная ставка изменяется, чтобы максимизировать долгосрочный рост. Помните, чтобы максимизировать долгосрочный рост, мы должны рассматривать текущую игру как неограниченную во времени. Другими словами, следует рассматривать каждую отдельную ставку, как будто она повторяется бесконечное число раз, если необходимо максимизировать рост в течение долгой последовательности ставок в нескольких играх. Давайте обобщим все вышесказанное: когда результат события оказывает влияние на результат(ы) последующего события(ий), нам следует выбирать наибольшее геометрическое ожидание. В редких случаях, когда результат не влияет на последующие события, следует выбирать наибольшее арифметическое ожидание. Математическое ожидание (арифметическое) не учитывает зависимость результатов внутри каждого сценария и поэтому может привести к неверному заключению, когда рассматривается реинвестирование в геометрической среде. Использование предложенного метода в планировании сценария поможет вам правильно выбрать сценарий, оценить его результаты и вероятности их осуществления. Этот метод внутренне более консервативен, чем размещение на основе наибольшего арифметического математического ожидания. Уравнение (3.05) показывает, что среднее геометрическое никогда не может быть больше среднего арифметического. Таким образом, этот метод никогда не будет более рискованным, чем метод наибольшего арифметического математического ожидания. В асимптотическом смысле (долгосрочном) это не только лучший метод размещения, так как вы получаете наибольший геометрический рост, он также более безопасен, чем размещение по наибольшему арифметическому математическому ожиданию, которое неизменно смещает вас вправо от пика кривой /.

Так как реинвестирование почти всегда имеет место в реальной жизни (до того дня, когда вы уйдете на пенсию), то есть вы снова будете использовать деньги, которые использовали сегодня, мы должны принимать решения, исходя из того, что такая возможность представится тысячи раз, для того чтобы максимизировать рост. Мы должны принимать решения таким образом, чтобы максимизировать геометрическое ожидание. Более того, так как результаты большинства событий влияют на результаты последующих событий, нам следует принимать решения и размещать средства, основываясь на максимальном геометрическом ожидании, что может привести к решениям, которые не всегда очевидны.

Поиск оптимального f по ячеистым данным \r\n

Теперь мы рассмотрим поиск оптимального f и его побочных продуктов по ячеистым данным. Этот подход также является гибридом параметрического и эмпирического метода и аналогичен процессу поиска оптимального f по различным сценариям; только на этот раз мы будем использовать среднюю точку ячейки. Для каждой ячейки у нас будет ассоциированная вероятность, рассчитанная как общее число элементов (сделок) в этой ячейке, деленное на общее число элементов (сделок) во всех ячейках. Для каждой ячейки у нас будет ассоциированный результат, рассчитанный по центральной точке ячейки. Например, у нас есть 3 ячейки и 10 сделок. Первую ячейку мы определим для P&L от -1000 долларов до -100 долларов. В этой ячейке будет два элемента. Следующая ячейка предназначена для сделок от -100 до 100 долларов, она вмещает 5 сделок. Наконец, в третью ячейку попадут 3 сделки, которые имеют P&L от 100 до 1000 долларов.

Ячейка Ячейка Сделки Ассоциированная Ассоциированный

вероятность результат

-1000 -100 2 0,2 -550

-100 100 5 0,5 0

100 1000 3 0,3 550

Теперь нам нужно решить уравнение (4.16), где каждая ячейка представляет отдельный сценарий. Таким образом, для случая с 3 ячейками оптимальное { составляет 0,2, или 1 контракт на каждые 2750 долларов на счете (наш проигрыш наихудшего случая будет средней точкой первой ячейки, или (-$1000 + -$100) / /2 =-$550). Этот метод можно использовать в реальной торговле, хотя он и недостаточно точен, поскольку допускает, что наибольший проигрыш находится в середине наихудшей ячейки, а это не совсем верно. Часто полезно иметь одну лишнюю ячейку, чтобы включить проигрыш наихудшего случая. Допустим, как и в примере с 3 ячейками, у нас была сделка с проигрышем в 1000 долларов. Такая сделка попадает в ячейку -1000 до -100 долларов и поэтому будет записана как 550 долларов (средняя точка ячейки), но мы можем разместить в ячейки те же данные следующим образом: \r\n

\r\nЯчейка Сделки Ассоциированная

Ячейка

Ассоциированный результат

вероятность \r\n

\r\n-1000

1

0,1

-1000

-1000 \r\n

\r\n-100 1 100 5

-550 0

550

-999 -100 100

0,1 0,5 0,3

1000 3 \r\n

\r\nТеперь оптимальное { составляет 0,04, или 1 контракт на каждые 25 000 долларов на счете. Вы видите, насколько приблизителен этот метод? Поэтому, хотя этот метод даст нам оптимальное { для ячеистых данных, надо понимать, что потеря информации при размещении данных в ячейки может сделать результаты настолько неточными, что они станут бесполезными. Если бы у нас было больше точек данных и больше ячеек, метод был бы намного точнее. Фактически, если бы у нас было бесконечное количество данных и бесконечное число ячеек, метод был бы абсолютно точным (если бы данные в каждой из ячеек были равны средним \r\nточкам соответствующих ячеек, то этот метод также был бы точным). Другой недостаток предлагаемого метода заключается в том, что среднее значение ячейки не обязательно расположено в центре ячейки. В реальности среднее значение элементов в ячейке будет ближе к моде всего распределения, чем к средней точке ячейки. Следовательно, полученная дисперсия будет больше, чем есть на самом деле. Существуют способы корректировки, но и они могут быть неточными. Проблему можно было бы преодолеть, и результаты были бы точными при бесконечном количестве элементов (сделок) и бесконечном количестве ячеек. Если у вас есть достаточно большое количество сделок и достаточно большое количество ячеек, вы можете использовать этот метод с большей уверенностью. Вы также можете провести тесты «что если», изменяя число элементов в различных ячейках, чтобы получить более точное приближение.

<< | >>
Источник: РАЛЬФ ВИНС. Математика управления капиталом. 2006

Еще по теме Планирование сценария:

- Авторское право - Аграрное право - Адвокатура - Административное право - Административный процесс - Антимонопольно-конкурентное право - Арбитражный (хозяйственный) процесс - Аудит - Банковская система - Банковское право - Бизнес - Бухгалтерский учет - Вещное право - Государственное право и управление - Гражданское право и процесс - Денежное обращение, финансы и кредит - Деньги - Дипломатическое и консульское право - Договорное право - Жилищное право - Земельное право - Избирательное право - Инвестиционное право - Информационное право - Исполнительное производство - История - История государства и права - История политических и правовых учений - Конкурсное право - Конституционное право - Корпоративное право - Криминалистика - Криминология - Маркетинг - Медицинское право - Международное право - Менеджмент - Муниципальное право - Налоговое право - Наследственное право - Нотариат - Обязательственное право - Оперативно-розыскная деятельность - Права человека - Право зарубежных стран - Право социального обеспечения - Правоведение - Правоохранительная деятельность - Предпринимательское право - Семейное право - Страховое право - Судопроизводство - Таможенное право - Теория государства и права - Трудовое право - Уголовно-исполнительное право - Уголовное право - Уголовный процесс - Философия - Финансовое право - Хозяйственное право - Хозяйственный процесс - Экологическое право - Экономика - Ювенальное право - Юридическая деятельность - Юридическая техника - Юридические лица -