2.6. ВЫВОДЫ
Актуальность исследований в данной области подтверждается тем, что в раздел «Анализ финансово-хозяйственной деятельности» Программы подготовки и аттестации профессиональных бухгалтеров, утверждённой решением Президентского совета ИПБ России (Протокол №09/-02 от 25.09.2002), включена тема «Методы и типовые методики анализа финансово-хозяйственной деятельности», в которой предусмотрено, в том числе, и изучение методов факторного анализа изменения экономических показателей.
Для решения основной задачи экономического факторного анализа в монографии представлен новый метод прямого статического детерминированного факторного анализа, основанный на использовании теоремы Ла- гранжа о среднем значении, обеспечивающий получение точного факторного разложения в случае произвольных конечных приращений факторов, позволяющий проводить исследования широкого спектра организационно- технологических процессов.
Использование нового метода в качестве базового элемента в системе управления производством позволяет найти решение основной задачи факторного анализа для всех основных типов факторных систем.
При этом наличие нескольких решений позволяет осуществлять более полную и содержательную интерпретацию результатов анализа, что улучшает функциональные возможности блока экономического анализа в системе управления производственными процессами.На основе метода конечных приращений разработаны методики прямого цепного динамического детерминированного факторного анализа, отличающиеся использованием теоремы о среднем значении и усреднения по аддитивным факторам, позволяющие эффективно использовать методы экономического факторного анализа для поддержки процессов управления с целью динамической оценки значений результирующего показателя.
Также с использованием нового метода экономического факторного анализа разработаны алгоритмы анализа эластичностей в индексном и относительном экономическом факторном анализе производственных функций, позволяющие получить точные выражения для представления относительного приращения или индекса роста обобщающего показателя в случае произвольных конечных приращений факторов.
Предложенные способы цепного анализа могут быть активно использованы на практике, где, как правило, приходится решать задачу факторного анализа именно в динамической её постановке. Формулы (2.33) и (2.36), полученные для относительных приращений и индексов показателей, методологически дополняют исследования, проводимые для абсолютных величин отклонений, и могут быть использованы в тех предметных областях, где данные подходы имеют значение для решения содержательных прикладных задач.
Применение разработанных методик и алгоритмов экономического факторного анализа, основанных на использовании теоремы о среднем значении, позволило преодолеть ряд недостатков, присущих большинству известных методов:
решена задача распределения величины неразложимого остатка без опоры на какие-либо априорные субъективные предположения о значимости того или иного фактора;
предложенные методики дают возможность решения основной задачи экономического факторного анализа в случае динамической оценки величин факторного влияния;
полученные алгоритмы являются универсальными и могут применяться для широкого спектра мультипликативных, кратных, аддитивных и смешанных типов моделей факторных систем.
Кроме того, в контексте решения задач экономического анализа, в монографии приведено исследование алгоритмов расчёта индексов Дивизиа, имеющих широкое применение в области применения методов теории индексов.
Рассмотренная задача оценки выпуклых комбинаций наглядно показывает как математический аппарат может быть использован для решения проблемы, имеющей актуальную экономическую интерпретацию [15].